Metal Gearmotor GB37 12V with 16 CPR Encoder
Metal Gearmotor GB37 12V with 16 CPR Encoder
Metal Gearmotor GB37 12V with 16 CPR Encoder
  • Load image into Gallery viewer, Metal Gearmotor GB37 12V with 16 CPR Encoder
  • Load image into Gallery viewer, Metal Gearmotor GB37 12V with 16 CPR Encoder
  • Load image into Gallery viewer, Metal Gearmotor GB37 12V with 16 CPR Encoder

Metal Gearmotor GB37 12V with 16 CPR Encoder

Regular price
$28.00
Sale price
$28.00
Regular price
Sold out
Unit price
per 

Overview

Measuring 37 mm (1.46″) in diameter, these brushed DC gearmotors are the largest and most powerful we carry. They are available in a range of gear ratios from 6.3:1 to 150:1 and with 12 V  motors, and all versions are available with integrated 64 CPR quadrature encoders on the motor shafts. The 12 V motors offer approximately the same performance at their respective nominal voltages. 

In general, these kinds of motors can run at voltages above and below the nominal voltages; lower voltages might not be practical, and higher voltages could start negatively affecting the life of the motor.

The gearboxes are composed mainly of spur gears, but they feature helical gears for the first stage for reduced noise and improved efficiency:

Using the Encoder

A two-channel Hall effect encoder is used to sense the rotation of a magnetic disk on a rear protrusion of the motor shaft. The quadrature encoder provides a resolution of 64 counts per revolution of the motor shaft when counting both edges of both channels. To compute the counts per revolution of the gearbox output, multiply the gear ratio by 64. The motor/encoder has six color-coded, 8″ (20 cm) leads terminated by a 1×6 female header with a 0.1″ pitch, as shown in the main product picture. This header works with. If this header is not convenient for your application, you can pull the crimped wires out of the header or cut the header off. The following table describes the wire functions:

Color Function
Red motor power (connects to one motor terminal)
Black motor power (connects to the other motor terminal)
Green encoder GND
Blue encoder Vcc (3.5 – 20 V)
Yellow encoder A output
White encoder B output

The Hall sensor requires an input voltage, Vcc, between 3.5 and 20 V and draws a maximum of 10 mA. The A and B outputs are square waves from 0 V to Vcc approximately 90° out of phase. The frequency of the transitions tells you the speed of the motor, and the order of the transitions tells you the direction. The following oscilloscope capture shows the A and B (yellow and white) encoder outputs using a 12 V motor at 12 V and a Hall sensor Vcc of 5 V:

By counting both the rising and falling edges of both the A and B outputs, it is possible to get 64 counts per revolution of the motor shaft. Using just a single edge of one channel results in 16 counts per revolution of the motor shaft, so the frequency of the A output in the above oscilloscope capture is 16 times the motor rotation frequency.